Higher-Order Septin Assembly Is Driven by GTP-Promoted Conformational Changes: Evidence From Unbiased Mutational Analysis in Saccharomyces cerevisiae
نویسندگان
چکیده
Septin proteins bind GTP and heterooligomerize into filaments with conserved functions across a wide range of eukaryotes. Most septins hydrolyze GTP, altering the oligomerization interfaces; yet mutations designed to abolish nucleotide binding or hydrolysis by yeast septins perturb function only at high temperatures. Here, we apply an unbiased mutational approach to this problem. Mutations causing defects at high temperature mapped exclusively to the oligomerization interface encompassing the GTP-binding pocket, or to the pocket itself. Strikingly, cold-sensitive defects arise when certain of these same mutations are coexpressed with a wild-type allele, suggestive of a novel mode of dominance involving incompatibility between mutant and wild-type molecules at the septin-septin interfaces that mediate filament polymerization. A different cold-sensitive mutant harbors a substitution in an unstudied but highly conserved region of the septin Cdc12. A homologous domain in the small GTPase Ran allosterically regulates GTP-binding domain conformations, pointing to a possible new functional domain in some septins. Finally, we identify a mutation in septin Cdc3 that restores the high-temperature assembly competence of a mutant allele of septin Cdc10, likely by adopting a conformation more compatible with nucleotide-free Cdc10. Taken together, our findings demonstrate that GTP binding and hydrolysis promote, but are not required for, one-time events--presumably oligomerization-associated conformational changes--during assembly of the building blocks of septin filaments. Restrictive temperatures impose conformational constraints on mutant septin proteins, preventing new assembly and in certain cases destabilizing existing assemblies. These insights from yeast relate directly to disease-causing mutations in human septins.
منابع مشابه
The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae.
UNLABELLED Septins are a conserved family of GTP-binding proteins that form heterooctameric complexes that assemble into higher-order structures. In yeast, septin superstructure at the bud neck serves as a barrier to separate a daughter cell from its mother and as a scaffold to recruit the proteins that execute cytokinesis. However, how septins recruit specific factors has not been well charact...
متن کاملCarboxypeptidasey from Saccharomyces cerevisiae Conformational Difference Reflected in Kinetic Behaviour in Water and Deuterium Oxide
متن کامل
The step-wise pathway of septin hetero-octamer assembly in budding yeast
Septin proteins bind guanine nucleotides and form rod-shaped hetero-oligomers. Cells choose from a variety of available septins to assemble distinct hetero-oligomers, but the underlying mechanism was unknown. Using a new in vivo assay, we find that a stepwise assembly pathway produces the two species of budding yeast septin hetero-octamers: Cdc11/Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11/Shs...
متن کاملRole of nucleotide binding in septin-septin interactions and septin localization in Saccharomyces cerevisiae.
Septins are a conserved family of eukaryotic GTP-binding, filament-forming proteins. In Saccharomyces cerevisiae, five septins (Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Shs1p) form a complex and colocalize to the incipient bud site and as a collar of filaments at the neck of budded cells. Septins serve as a scaffold to localize septin-associated proteins involved in diverse processes and as a barrier...
متن کاملGTP Binding Induces Filament Assembly of a Recombinant Septin
The septins are a family of GTPases involved in cytokinesis in budding yeast, Drosophila, and vertebrates (see for review). Septins are associated with a system of 10 nm filaments at the S. cerevisiae bud neck, and heteromultimeric septin complexes have been isolated from cell extracts in a filamentous state. A number of septins have been shown to bind and hydrolyze guanine nucleotide. However,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 196 شماره
صفحات -
تاریخ انتشار 2014